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Background: Image-Sharing Behavior

People often share a variety of images during interactions
via instant messaging tools
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Existing multi-modal dialogue datasets have three significant
limitations: Quality, Image Diversity, Generalization
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DialogCC: An Automated Pipeline for Creating High-Quality Multi-modal Dialogue Datasets
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1) Collecting Source Dataset
@ sced Dialogue

My dog got very sick and lay in bed for a couple

weeks. | was so concerned.

Image credits created by Dalle 2

That is so sad | hope your pet gets better

She did get better eventually. During that time |
tried to tend to her as much as | could.
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That is so sweet, | think that is why she
your caring ways

got better,

" Source Image-Caption Pairs

Overview of Proposed Automatic Pipeline

We propose a fully automatic framework for creating a multi-modal dialogue dataset that
involves three main steps: collecting, aligning, and filtering.

* Collecting: We collect source datasets (e.g., PersonaChat, CC3M)

* Aligning: We ask GPT-4 to infer all possible image-sharing moments and leverage CLIP
to increase the aligned image relevancy

» Filtering: We eliminate inappropriate images based on CLIP similarity

2) Aligning Images and Dialogues

My dog got very sick and lay in bed for a couple

My dog got very sick and lay in bed for a couple
weeks. | was so concerned.

weeks. | was so concerned.

She did get better eventually. During that time |
tried to tend to her as much as | could.

That is so sad | hope your pet gets better

She did get better eventually. During that time |
tried to tend to her as much as | could.
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That is so sweet, | think that is why she IS so sweet, | think that iswhy s

your caring ways

got better, got better, your caring ways

3) Filtering Multi-Modal Dialogue
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It must have been fun to catch up with them.

It was. We've spent a lot of time together and apart now, so it was good to catchup. J

Well | hope you guys continue to stay in touch.
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Removing Low-Quality & Frequent Images

Matching Relevant Images to Removing Inconsistent Images

Image-Sharing Moment

Nature is a wonderful thing
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Analysis of DialogCC

To assess the quality of DialogCC, we conduct the
human evaluations based on five criteria:

* Image-Sharing Turn Relevance: 3.68

* Image-Sharing Speaker Relevance: 95.1%
* Image-Sharing Rationale Relevance: 3.41
* Aligned Image Relevance: 3.30

* Image Consistency: 3.57
* Inter-rater agreement (Krippendorff's alpha): 0.39 (fair
agreement)

To assess the quality gap between DialogCC and
real-world scenarios, we conduct head-to-head
human evaluations by comparing DialogCC with
existing datasets.
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