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Instruction tuned LMs have transformed the field
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Instruction tuning impacts on NLP tasks
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Big, instruction-tuned LMs are SoTA and human-level summarizers

[Zhang et al 2023]



Instruction tuning matters – even more than scale

The smallest instruct model outperforms the largest non-instruct one (0.76 v 0.88)
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Why does instruction tuning work so well?



Part 1: Does LLM’s generalization come from data? RL?

[Ouyang 2020]

What’s key to instructGPT? 
Supervised fine-tuning? Data quality? Reinforcement learning?

5



Part 2: How much does the format shape our evals?

For ChatGPT (3.5):

What is 7 + 8? 15

But also..

7 + 8 = 15, True or False? False

Major problems for LLMs

• Does the LM know 7+8? (understanding)

• Can we rely on LLMs to do arithmetic? (engineering)



Instruction-following with synthetic supervision

Synthetic data/eval can assist in

Developing instruction-following 
methods and evaluations
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Part 1: Understanding RLHF and generalization

Part 1: Replicating LLMs Part 2: Probing for opinions

Understanding LLM generalization require replication
we use synthetic/simulated data to replicate LM training
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Work with
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What makes instruct GPT work?

[Ouyang 2020]

What’s key to instructGPT? 
Supervised fine-tuning? Data quality? Reinforcement learning?
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Our goal and 3 challenges

There are several major challenges

❖ How do we get diverse, large sets of instructions?

❖ How can we get a replicable set of pairwise, preference feedback?

❖ What RLHF implementations can we actually use?

Goal: replicate the instructGPT training process 
in a low-cost, fast, replicable simulator
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Our approach: full simulator for RLHF

Step 1 (SFT) – Alpaca Step 2 (RLHF) – AlpacaFarm Step 3 (Evals) - AlpacaEval

Simulating annotators (via GPT4) enables fast, low-cost prototyping and R&D of LLMs

[Dubois*, Li*, Taori*, Zhang*, Gulrajani, Ba, Guestrin, Liang, Hashimoto 2023]
11



Simulating RLHF preferences

Can we use powerful, API LLMs (GPT4) to build useful simulation environments? 
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GPT-4 has high correlation with humans

Many GPT4 prompts (orange circle, gray 
circles) have similar agreements to held-

out annotators…
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But turns out to have much lower noise
(we’ll get back to this later)



Carefully designing prompts for simulated feedback

Testing prompts for agreement and variance Testing / removing spurious correlates

(+Randomization of pairwise order)
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Validation in 4 parts

1. External validity of systems rankings

2. Qualitative phenomena in RLHF

3. Working systems

4. Sim-to-real transfer
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Validating the accuracy of simulated annotations

Agreement near human inter-annotator levelsNear-perfect rank correlation at the system level

[Dubois, Li, Taori, Zhang et al 2023]

(Human evaluation: 12 Amazon mechanical turkers w/ 
qualification + rolling quality control checks) 

16



AlpacaFarm highlights the complexity of instruction RLHF

AlpacaFarm replicates important, complex phenomena like overoptimization

[Dubois, Li, Taori, Zhang et al 2023]
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High-performance, reference methods for RLHF

Our findings replicate RLHF’s effectiveness, and these results hold outside the simulator

[Dubois, Li, Taori, Zhang et al 2023]18



Qualitative changes from RLHF

RLHF tunes the models to be more verbose, and sometimes improves readability
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Sim2real transfer
Models trained with the simulator score well under human evaluation

Correlations between the GPT4 emulator and humans hold even when actively optimized
(Though there’s a major transfer penalty!)
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From text to tools

Tool use enables powerful new applications, but also makes LLM failures higher stakes
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Beyond simulating pairwise feedback: tools

We take inspiration from a rich literature on using simulators to test cars or robots.

We can rapidly evaluate LLMs that use tools in dynamic environments using LLMs

[Ruan*, Dong*, Wang, Pitis, Zhou, Ba, Dubois, Maddison, Hashimoto]22



Tools can lead to new failure modes and risks
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[Ruan*, Dong*, Wang, Pitis, Zhou, Ba, Dubois, Maddison, Hashimoto]



Result 1: coverage of broad, diverse toolkits

Broad set of toolkits (both existing and 
future) and potential risks
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Result 2: Simulator validity
End-to-end human evaluation of identified agent failures

Individual human annotator of emulator steps and evaluator judgments
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Most terminal failures can be instantiated
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Evaluating current agents

High failure rates, even for the best models
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Beyond this work: LLM driven prototyping lowers the cost of R&D

AlpacaFarm: Studying data + RLHF
ToolEmu/AlpacaEval: 

Automated evals + red-teaming

Caveat: development and deployment needs more than automated data/evals

Development metrics, synthetic data Crowdsourced data + evaluation Live evaluation
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Part 2: Generator-validator consistency

Part 1: Replicating LLMs Part 2: Consistency
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Work with
     Lisa Li, Vaish Srivastava, Siyan Li, Percy Liang

Are benchmarks and evaluations
brittle to the evaluation task format?



Why are language models sometimes so brittle?

For ChatGPT (3.5):

What is 7 + 8? 15

But also..

7 + 8 = 15, True or False? False

Major problems for LLMs

• Does the LM know 7+8? (understanding)

• Can we rely on LLMs to do arithmetic? (engineering)



Implications for how we measure and probe LMs
Multiple choice QA: Extremely useful for benchmarking (e.g. MMLU)
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If LMs were consistent – we could more broadly use and trust  MCQA (e.g. OpinionQA)



What we focus on: generator validator consistency
If a generator performs a task, a validator should agree with it 

In this work we..
• Evaluate GV-consistency
• Improve consistency
• Analyze the benefits of consistency



How good is GV consistency?
The scenarios
• Reasoning

• Arithmetic
• Plan arithmetic

• Safety
• Harmful questions
• Jailbreaking

• QA
• TriviaQA

• Style transfer
• Humor, formality, length etc.

GV consistency is a problem across a range of tasks



QA

GV consistency rates (accuracy): ChatGPT (3.5) 89.6, GPT4 95.3, Alpaca30B 79.9



Models are only mildly consistent

Across a range of reasoning, QA, and generation tasks: 60-95% consistency

Implications for.. 
• Analyzing models with multiple-choice QA
• Using LMs as emulators in different task formats
• Designing more robust LMs
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Can GV consistency be improved?
Our approach: filter and fine-tune

• Inspired by co-training and self-training 

• Requires no labeled data 

• Straightforward to run on open models (Alpaca 30B)



Results - consistency

Consistency tuning can improve GV-consistency substantially



Often improves both the generator and discriminator

Generator: major gains on 3 tasks (priority, plan arith, harmful)
Discriminator: small, but consistent gains.



Findings for consistency

LM consistency across task formats
is a problem, but can be improved

• Should consider consistency beyond input perturbations

• GD-style consistency can be checked/improved w/o labeled data

• Gains can extrapolate, and also improve the G/D tasks.



Takeaways

Feedback from API LMs can help in studying instruction following

LMs can self-train using consistency as a form of feedback

LMs-as-emulators can empower replication and research

Consistency between task formats

Acknowledgements!
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